Evaluation of the antimyotonic activity of mexiletine and some new analogs on sodium currents of single muscle fibers and on the abnormal excitability of the myotonic ADR mouse.

نویسندگان

  • A De Luca
  • S Pierno
  • F Natuzzi
  • C Franchini
  • A Duranti
  • G Lentini
  • V Tortorella
  • H Jockusch
  • D C Camerino
چکیده

To search for use-dependent sodium channel blockers to selectively solve skeletal muscle hyperexcitability in hereditary myotonias, mexiletine (MEX; compound I) and its newly synthetized analogs, 2-(4-chloro-2-methylphenoxy)-benzenethanamine (compound II) and (-)-S-3-(2,6-dimethylphenoxy)-2-methylpropanamine (compound III), were tested on intercostal muscle fibers from the myotonic ADR mouse through use of the standard current-clamp microelectrode technique. In parallel, the effects of these compounds on the sodium channels were measured on frog muscle fibers under voltage-clamp conditions. The tonic and use-dependent blocks of peak sodium currents (I(Namax)) produced by each compound were evaluated by using a single depolarizing pulse and a pulse train at 10 Hz frequency, respectively. At 10 and 50 microM, MEX decreased the occurrence of spontaneous excitability in myotonic muscle fibers; 100 microM was required to decrease the amplitude of the action potential and the stimulus-induced firing of the membrane as well as to increase the threshold for generation of action potential. At 300 microM, MEX decreased the latency of the action potential and increased the threshold current to elicit a single action potential. MEX produced a tonic block of I(Namax) with an half-maximal concentration (IC50) of 83 microM, but the IC50 value for use-dependent block was 3-fold lower. Compound III, which differs from MEX in that it has a longer alkyl chain, similarly blocked first the spontaneous and then the stimulus-evoked excitability of myotonic muscle fibers but at 2-fold lower concentrations than MEX. Compound III was less potent than MEX in producing a tonic block of I(Namax) (IC50 = 108 microM) but was a strong use-dependent blocker with an IC50 close to 15 microM. The more lipophylic compound II irreversibly blocked both spontaneous and stimulus-evoked membrane excitability at concentrations as low as 10 microM and shortened the latency of the action potential in a concentration-dependent fashion. Compound II produced a potent tonic block of I(Namax) (IC50 = 30 microM), and its potency increased 2-fold during high-frequency stimulation. Both of the new analogs (compound II in particular), but not MEX, were less effective on the excitability parameters of striated fibers of healthy vs. ADR mice, a characteristic that increases their interest as potential antimyotonic agents.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Calixmexitil: Calixarene-based Cluster of Mexiletine with Amplified Anti-myotonic Activity as A Novel Use-dependent Sodium Channel Blocker

Mexiletine as the first choice drug in myotonia treatment is a chiral sodium channel blocker clinically used in its racemic form. The phenolic structure of this drug, prompted us to design its novel calix[4]arene-based cluster in a chalice-shaped structure. Therefore, the present study reports the synthesis and in-vitro anti-myotonic activity of the chalice-shaped cluster of mexiletine...

متن کامل

Calixmexitil: Calixarene-based Cluster of Mexiletine with Amplified Anti-myotonic Activity as A Novel Use-dependent Sodium Channel Blocker

Mexiletine as the first choice drug in myotonia treatment is a chiral sodium channel blocker clinically used in its racemic form. The phenolic structure of this drug, prompted us to design its novel calix[4]arene-based cluster in a chalice-shaped structure. Therefore, the present study reports the synthesis and in-vitro anti-myotonic activity of the chalice-shaped cluster of mexiletine...

متن کامل

Increased sodium channel use-dependent inhibition by a new potent analogue of tocainide greatly enhances in vivo antimyotonic activity

Although the sodium channel blocker, mexiletine, is the first choice drug in myotonia, some myotonic patients remain unsatisfied due to contraindications, lack of tolerability, or incomplete response. More therapeutic options are thus needed for myotonic patients, which require clinical trials based on solid preclinical data. In previous structure-activity relationship studies, we identified tw...

متن کامل

In vivo evaluation of antimyotonic efficacy of β-adrenergic drugs in a rat model of myotonia

The sodium channel blocker mexiletine is considered the first-line drug in myotonic syndromes, a group of muscle disorders characterized by membrane over-excitability. We previously showed that the β-adrenoceptor modulators, clenbuterol and propranolol, block voltage-gated sodium channels in a manner reminiscent to mexiletine, whereas salbutamol and nadolol do not. We now developed a pharmacolo...

متن کامل

Synthesis and in vitro sodium channel blocking activity evaluation of novel homochiral mexiletine analogs.

New chiral mexiletine analogs were synthesized in their optically active forms and evaluated in vitro as use-dependent blockers of skeletal muscle sodium channels. Tests carried out on sodium currents of single muscle fibers of Rana esculenta demonstrated that all of them exerted a higher use-dependent block than mexiletine. The most potent analog, (S)-3-(2,6-dimethylphenoxy)-1-phenylpropan-1-a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of pharmacology and experimental therapeutics

دوره 282 1  شماره 

صفحات  -

تاریخ انتشار 1997